Assignment #11

HW # 11 1.6 p 132 # 2, 12, 16, 18, 27, 28, 42, 43

2. a. \[P(x) = R(x) - C(x) \]
 \[= 215x - (105x + 1650) \]
 \[= 110x - 1650 \]
 b. \[P(50) = 110(50) - 1650 = 3850 \]

12. \[C = 27x + b \]
 Use the fact that (50, 4350) is on line to solve for \(b \), the fixed costs.
 \[4350 = 27(50) + b \]
 \[b = 3000 \]
 The cost function is \(C(x) = 27x + 3000 \).

16. \(R(x) = 81.50x \), \(C(x) = 63x + 1850 \)
 At the break-even point, \(R(x) = C(x) \), so
 \[81.50x = 63x + 1850 \]
 \[18.50x = 1850 \]
 \[x = 100 \text{ units} \]

18. \(R(x) = 89x \), \(C(x) = 1400 + 75x \)
 At the break-even point, \(R(x) = C(x) \), so
 \[89x = 1400 + 75x \]
 \[14x = 1400 \]
 \[x = 100 \text{ sets of recaps} \]

27. If price increases, then the demand for the product decreases.

28. If the price increases, then the supply will increase.

42. At the market equilibrium point,
 Demand = Supply, so
 \[-2q + 320 = 8q + 2 \]
 \[318 = 10q \]
 \[31.8 = q \]
 \[p = -2q + 320 \]
 \[p = -2(31.8) + 320 = 256.40 \]

43. \(-\frac{1}{2}q + 28 = \frac{1}{2}q + \frac{4}{3} \)
 Required condition.
 \[-5q + 168 = 2q + 68 \]
 Multiply both sides by 6 to simplify.
 \[-5q = -100 \]
 \[q = 20 \]
 Substituting into one of the original equations gives \(p = -\frac{1}{2}(20) + 28 = 18 \).
 Thus, the equilibrium point is \((q, p) = (20, 18) \).