Math 416 – Introduction to Abstract Algebra

Chapter 3 – Finite Groups and Subgroups

9/13 – HW #1 due: Ch 1, p. 37 # 2, 3, 12, 13, 16, 20, 22
9/18 – HW #2 due: Ch 2, p. 53 # 1, 2, 3, 6, 7, 13, 16, 22, 25, 26
9/20 - HW #3 due: Ch 3, p. 67 # 1, 2, 4, 6, 8, 9, 14, 21, 22, 28 (see p.47 example 17 and p. 45 example 9)
Online Quiz Zero – technical problems continue

Remember, sketchy definition of a group:

G, °
1. closed
2. associative
3. identity
4. inverses

Definition: The number of elements in a group is called the order of the group, denoted |G|. If G is not a finite group, we say it is an infinite group, even though “infinity” is not a number.

Examples:
|Z_n| = n
|D_4| = 8
|Z| is infinite
|U_{10}| = 4

Definition: The order of an element g in G is the smallest positive integer n, if one exists, such that g^n = e. If no such exists, we say that g has infinite order. The order of g is denoted |g|.

Examples:
|e| = 1, in any group
In D_4, |R90| = 4 and |f| = 2 for any of the flips, D, D’, H and V.
In Z_{12,+}, |2| = 6, |3| = 4, and if a <> 1 and GCD(a, 12)=1, then |a| = 12

Definition: If H is a subset of G, and if H is a group under the same operation as G, then H is called a subgroup of G.
Examples:

In any group, G, both \{e\} and G itself are subgroups of G. These are called
trivial subgroups. All other subgroups are called proper. A group with no
proper subgroups is called simple. \(D_4\) is not simple, but \(\mathbb{Z}_p\) is simple
exactly when \(p\) is prime.

In \(\mathbb{Z}, +\), the even integers form a subgroup of \(\mathbb{Z}\).

This subgroup is denoted \(2\mathbb{Z}\).

\(3\mathbb{Z}, 4\mathbb{Z}, \text{ etc. are also subgroups.}\)

\(\mathbb{Z}_n\) is NOT a subgroup of \(\mathbb{Z}\).

Its operation is different. In \(\mathbb{Z}\), \((n-1) + 1 = n\), but in \(\mathbb{Z}_n\), \((n-1) + 1 = 0\).

Theorem 3.1: One-step subgroup test:

Let G be a group and H be a (non-empty) subset of G. If \((ab)^{-1}\) (or, in additive
notation, if \(a - b\)) is always in H, whenever a and b are both in H, then H is a
subgroup of G.

Proof plan: To check each of the conditions in the definition of subgroup, but not
necessarily in order:

0. non-empty subset
1. closed operation
2. associative
3. identity
4. inverses

Proof in five steps:

0. It is given that H is a non-empty subset.
2. The operation is the same, so it is associative.
3. If \(x\) is in H, then the condition guarantees that \(xx^{-1}\) is in H (take \(a = x\) and
\(b = x\) in the condition), so e is in H.
4. Suppose \(x\) is in H. We know (from 3) that e is in H, so (take \(a = e, b = x\))
\(ex = x^{-1}\) is in H.
1. Suppose \(x\) and \(y\) are in H. Then (from 4) \(y^{-1}\) is in H, so
(take \(a = x, b = y^{-1}\), and knowing that \(y^{-1}y = y, xy^{-1}y = xy\) is in H.

QED

Example: Let G be an abelian group. Let \(H = \{x \in G : x^2 = e\}\). Then H is a subgroup of
G.

Note: this condition isn’t really that weird. In \(D_4\), the elements H, V, D, D’, e and R180
all satisfy this property, but \(D_4\) isn’t abelian, so the theorem doesn’t apply here.
There are lots of abelian examples, though. In U_8, 1, 3, 5 and 7 have this property.

Proof plan: We need to show H is non-empty, and that it satisfies the ab^{-1} condition. That is, if $a^2 = e$ and $b^2 = e$, then $(ab^{-1})^2 = e$.

Proof. $e \in H$ so H is non-empty.
Note, if $x^2 = e$, this means that $x = x^{-1}$.
Suppose that a and b are in H. This means that $a^2 = e$ and $b^2 = e$.
Then $(ab^{-1})^2 = (ab)^2$ (why?)

$$= (ab)(ab)$$
$$= (aa)(bb)$$ because G is abelian
$$= e e$$

so, by the definition of H, ab^{-1} is in H
so, by the one-step subgroup test, H is a subgroup.

QED

Theorem 3.2: Two-step subgroup test
Let G be a group and H be a nonempty subset of G. If ab is in H whenever a and b are in H, and if a^{-1} is in H whenever a is in H, then H is a subgroup of G.

Proof plan: a direct proof using theorem 3.1.

Proof: We are given that H is non-empty.
Suppose a and b are in H. Then b^{-1} is in H, by property 2. Then ab^{-1} is in H by property 1. Then H is a subgroup by theorem 3.1.

QED

Theorem 3.3: Finite subgroup test
Suppose H is a non-empty finite subset of G, and that H is closed under the operation of G. Then H is a subgroup of G.

Proof plan: To use a clever trick of Euler to show that H has inverses, and then to apply the two-step subgroup test.

Proof: Suppose that H is finite, non-empty and closed under the operation. Let a be any element of H. We will show that a^{-1} is in H.
Consider the sequence a, a^2, a^3, \ldots. Since H is closed, all these elements must be in H.

H has only finitely many elements, so eventually this sequence must repeat.

Suppose that the first repetition is that $a^i = a^j$, with $i > j$.
Then $a^{i-j} = e$, and so $a^{i-j-1} = a^{-1}$, and it is in H.
So, by the two-step subgroup test, H is a subgroup.

QED

Notation: For a in G, let $\langle a \rangle$ be the set of all elements \(a^n\), where n is in \mathbb{Z}, including $n=0$ giving e and $n=-1$ giving a^{-1}.

Theorem 3.4: $\langle a \rangle$ is a subgroup.

Let G be a group and a be any element of G. Then $\langle a \rangle$ is a subgroup of G.

Proof plan: Direct proof using the one-step subgroup test. Two-step test would also work.

Proof: Let a be in G. a is in $\langle a \rangle$ so $\langle a \rangle$ is non-empty.

Suppose that x and y are in $\langle a \rangle$. Then for some m and n, \(x=a^m\) and \(y=a^n\).

Then \(y^{-1} = a^{-n}\) and \(xy^{-1} = a^{m-n}\). That’s in $\langle a \rangle$, so, by the one-step test, $\langle a \rangle$ is a subgroup.

QED

Example: In D_n, let R be the smallest rotation, $R(360/n)$, and F be a flip. Then $\langle R \rangle$ is a subgroup. It turns out that $\langle R \rangle$ is all rotations, no flips.

Example: In \mathbb{Q}, take $a = \frac{1}{2}$. Then $\langle a \rangle$ is the set of all powers of 2, (positive powers, and negative powers, which are still positive numbers.) This subgroup “behaves” just like the integers, since 2^0 is the identity, and when you multiply powers of 2 together, you just add exponents.

Definition: A group is called cyclic if has an element a such that $G = \langle a \rangle$.

Examples: \mathbb{Z} $(+)$, \mathbb{Z}_n, and, for some values of n, U_n.

Definition: The Center of a group G, denoted $Z(G)$, is the set of all elements of G that commute with every element of G. That is,

$$Z(G) = \{a \in G : \forall x \in G, ax = xa\}$$

Note that if G is abelian, then $Z(G) = G$, and conversely.

(what does “and conversely” mean)

Theorem 3.5: $Z(G)$ is a subgroup of G.

Proof plan: Direct proof using the two-step test. We could use the one-step test, but it is a little trickier.
Proof: e is in $Z(G)$, so $Z(G)$ is nonempty. (Don’t skip the “nonempty” part!)

Suppose that a and b are in $Z(G)$. We want to show that ab is in $Z(G)$.
Suppose that x is any element of G. Then
\[
(ab)x = a(bx) \quad \text{associativity}
\]
\[
= a(xb) \quad \text{because } b \text{ is in } Z(G)
\]
\[
= (ax)b \quad \text{associativity}
\]
\[
= (xa)b \quad \text{because } a \text{ is in } Z(G)
\]
\[
= x(ab) \quad \text{associativity}.
\]
So, ab is in $Z(G)$
So, by the two-step test, $Z(G)$ is a subgroup of G. \(\text{QED}\)

Definition: If a is in G, then the centralizer of a in G is the set of all elements that commute with a, denoted $C(a)$. That is,
\[
C(a) = \{x \in G : ax = xa\}
\]

“Obviously”, $e \in C(a)$, so $C(a)$ is nonempty.

In fact, $Z(G) \subseteq C(a)$, since elements of $Z(G)$ have to commute with everything, but elements of $C(a)$ only have to commute with a.

In fact, $Z(G) = \bigcap_{a \in G} C(a)$.

Theorem 3.6: $C(a)$ is a subgroup, for each a in G.

Proof plan: to make you do it as an exercise.